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The extension to non-Newtonian viscous incompressible fluid flows of a finite-element 
method using a nine-node isoparamctric Langrangian element with a penalty approach 
for the continuity equation is studied. The Bingham fluid is used to illustrate the effectiveness 
of the approach. An application to limit load analysis is also considered. 

In this paper we study the extension of an application of the finite-element method 
(FEM) developed for viscous incompressible flows by Bercovier and Engelman [3] to 
the numerical simulation of non-Newtonian incompressible flows. We shall assume 
that the reader is familiar with the theory and method as presented in [3]. Briefly this 
was as follows: the weak variational formulation of the Navier-Stokes problem was 
replaced by a penalty function approach for the continuity equation and it was shown 
that the nine-node Lagrangian isoparametric element is a powerful element when used 
with the penalty and reduced integration approach. 

Our aim here is to study the implementation of this same penalty function approach 
to a class of non-Newtonian fluids. As the representative model of this class we have 
chosen Bingham’s fluid; though the FEM presented here (and the corresponding 
code) is currently being used with success to study a range of non-Newtonian fluids 
having constitutive relations of the same type as that of Bingham’s fluid, e.g., mono- 
tone perturbations [7] and blood flow simulation [8]. 

The advantage of a Bingham model, apart from its being representative of a large 
class of fluids is that it has been the subject of some mathematical studies (cf. Duvaut 
and Lions 151) so that the penalty method can be theoretically justified. 
Similar numerical studies have been carried out by Fortin [9] and Begis [1] using dif- 
ferent approaches. Fortin used triangular finite elements and duality type methods. 
Non-Newtonian fluids together with a penalty approach were first considered by 
Zienkiewicz and Godbole [ 131 using the eight-node serendipity element. 
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CONSTITUTIVE RELATIONS 

In order to simplify the ensuing theory we will assume that thermal effects are 
negligible and limit ourselves to a homogeneous isotropic fluid in two dimensions. Let 
Q be a bounded domain of R, , I’ its boundary. For a given “source” field f we 
consider a fluid in motion, the appropriate equations being: 
Equation of motion: 

Continuity equation: 

ui,i = 0. 

Boundary condition: 

Ui IF = 0. 

The stress tensor, gii , is given by 

Uij = --p6ij + 7ij ) 

P being the hydrostatic pressure and rij the deviatoric part of the stress tensor. 
We denote by Dij the strain rate tensor 

(2) 

(3) 

(4) 

Dii = Hui,j + uj,i) ui the velocity field of the fluid (5) 

and by Dn , the second invariant of the tensor Dij , given by D,, = DijDij . Similarly 
we define rn = TijTij 
We consider constitutive relations of the form 

where p is a function of D,, and reduces to p = pO (constant) for the Newtonian case. 
More precisely, for fluids exhibiting rigid visco-plastic behavior we have 

Tij = 2/-441) Dii if 7 II 2 &?t 
(7) 

Dij = 0 if T[] < g2, 

where g is a constant called the plasticity level. 
As stated previously we will limit ourselves to a discussion of Bingham’s fluid for 

which the constitutive relation is 

7ij = 2poDii -+ gDii/D;:" if 7 II 3 g2, 

Di, =0 if 711 < g2, (8) 
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i.e., 

AD,,) = ~0 + (g/2) Dii”2, 711 >, g2. (9) 

It is clear that 7ij is not defined if D,, = 0 and that this may lead to numerical difficul- 
ties if (8) or (9) is used. One way to overcome this difficulty is to replace (9) by 

P@II) = PO + (g/2)& + q)-1’2, (10) 

where 7 can be as small as one wishes. Equation (10) actually leads to a weak formula- 
tion of Eqs. (l)-(4). Finally we limit ourselves to the stationary case; extension to 
time-dependent problems is straightforward. 

WEAK FORMULATION 

We introduce the Sobolev spaces 

H,‘(Q) = {u E L2(Q): uj E L2(Q), u Ii- = O}, 

v = (KxQ)Y, 
W = L2(Ji’)/R 

and define the following bilinear and trilinear forms on V x V and V x V x V, 
respectively, given by Re = po/pLV, where L and V are, respectively, a characteristic 
length and a characteristic velocity of the flow and p. is as in Eq. (9). 

and 

4~ v> = 1 Did4 D,,(v) dQ, 

b(u, v, w) = i uiuj*iw’j di2, 

&I, v, w) = #7(u, v, w) - b(u, w, v)], 

It can be shown [5] that if there is a regular solution of (1) (2), (3) and (IO) (we assume 
for simplicity p 3 1) then this solution is also a solution of the following problem: 
find (u, p) E V x W so that 

fm + s P div v &J =-. 
s 

f . v dQ 
I) R 

div u = 0 for all v E I/. (11) 

Equation (11) is dimensionless; Re is the Reynolds number. 
Rigorously we must denote a solution of (10) as (u, , P,,) because of its dependence 
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on 7. Duvaut and Lions [5] have shown that for Re small enough (u, , I’,,) is unique and 
u, tends weakly in V to u*, the unique solution of the inequality: 

for all v E V such that div v = 0. (12) 

Since in the FEM formulation we actually define (11) and (12) on a finite-dimensional 
subspace V, C V the computed solution u, of (11) will always converge strongly to 
the solution u* of (12) in V, . 

In practice, one takes y as small as possible. Note that a priori there is no unique 
“hydrostatic pressure” corresponding to the solution of (12). 

PENALTY FUNCTION APPROACH 

In order to overcome the numerical problems arising from the continuity equation 
(2) we proceed as in [3] and replace (11) by 

x- 1 j (div u,)(div v) dV = j,, f . v dQ (13) 

and (12) by 

1 -- 
Re a(u, , v - u,) + &UC , u, 7 4 + -& j-a G”Cv> - $ s, h,(uJ dQ 

2 s f . (v - u,) dQ (14) 
R 

Then for Re “small enough” we have the following error estimate. 

THEOREM. Let u,,, (resp. u,) be the unique solution of (13) (resp. (14)) and let U, 

(resp. u) be the unique solution of (11) (resp. 12); then 

and 
il u, - u,,, II < c@/2 

(15) 
11 u - u, 11 < C’E1/2. 

For proof cf. [2]. Note that compared with the similar result for the Newtonian case 
[3] we have an error estimate of O(c1j2) instead of O(E). The proof of estimate (15) is 
a consequence of the classic property (cf. [I I]) 

sup sn p div v d* > k 11 P/I 
IIVI’Y ’ 

w for all P E W. 
YE Y- (01 

(16) 
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In order to obtain a discrete analog of (15) it is then crucial to have an FEM such 
that (16) is satisfied. As stated in [3] and proved in [6] this is the case for the nine-node 
Langrangian element provided that the continuity equation be satisfied in a weaker 
sense, which we denote by div, u = 0. For full details of this definition we refer the 
reader to [3]. This definition amounts to a “reduced” integration for the penalty 
term J-D (div u,)(div v) d.Q in (13). 

FINITE-ELEMENT IMPLEMENTATION AND SOLUTION ALGORITHM 

We designate by Vh the finite-dimensional space defined by a given FEM “triangula- 
tion” and the corresponding basis functions derived from the nine-node Lagrangian 
element. Problem (11) is nonlinear; in order to solve it over V, we use the following 
quasi-linearization algorithm. Let u” be an initial guess, un the nth iterate; then we 
compute un+l, the solution of 

1 
Re 

u(w+l, v) + 6(P, unfl, vh) + f (div, unil, div, vh) 

I fh . v,, dJ-2 for all vh E V, (17) 

We recall from [3] that the derivation of the stiffness matrices A, B (u,) for u(unrl, v?,) 
and 6(un, un+l, vh) is carried out by 3 x 3 Gaussian quadrature. The stiffness matrix 
arising from the penalty term (1 /c)(divh un’-l, div, vh) is obtained by directly computing 
(l/c) SD Cd’ IV u”+‘)(div VJ dQ by means of 2 x 2 Gaussian quadrature. The only new 
term here is the stiffness matrix D(u”) for 

Since the gradient of II,, can be very large it is necessary to use a higher-order 
quadrature rule in order to follow the rapid changes in this nonlinear term. A 4 x 4 
Gaussian quadrature rule was used and tests with 3 x 3 quadrature rule showed very 
poor convergence performance and in many cases oscillation and divergence. 

Fortin [9], using a duality approach (Lagrange multiplier for the non-Newtonian 
term), observed the same phenomenon; that more refined approximation of the non- 
Newtonian term in the equations resulted in a more stable algorithm. 

Thus the computation of the total stiffness matrix involves different quadrature rules 
for the different linear and nonlinear terms, the different choices for the quadrature 
order all being based on mathematical considerations. The pressure field P is “reco- 
vered” from the velocity field by evaluating (l/c) C . u at the 2 x 2 Gaussian points 
of integration, for each element; note that this results in a pressure field discon- 
tinuous at element boundaries. Algorithm (17) was applied using a value of 77 = IO-la; 
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the machine accuracy for a CDC computer. It can be proved that for g = 0 (cf. [2]) 
the algorithm converges provided that Re is small enough. Unfortunately there are 
to date no theoretical results for g > 0 and this remains an area for futher research. 

NUMERICAL RESULTS 

Four different flows were studied: 

(a) Wall-driven cavity. The boundary conditions are shown in Fig. la. 

Y 
A 

ux -1 

=o 
y=, ------2 _-------- ---- 

u=o u=o I_ - w 

a 

0 * x 
u=o x=1 
w w 

” free 
y=,--------------------, 

I 

I 
I 
I 

I I 

lb : 

u=o a=1 - - 

FIG. 1. (a) Wall-driven cavity, (b) limit load analysis. 
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(b) Fluid in a closed square cavity subject to the body force F: 

Fz, = 300(x, - 6); Fz, = -300(x, - 4) 

with u = 0 on the entire boundary. 

(c) Fluid contained within two cylinders with the minor cylinder rotating with 
a constant angular speed such that for any point on the rotating boundary a0 = 1. 

(d) An application of Bingham fluids to the computation of the limit load for a 
von Mises plastic material. The boundary conditions are shown in Fig. lb. 

All numerical examples were run on the CDC Cyber 74 of the Hebrew University 
of Jerusalem Computer Centre. The rigid regions of the flows presented are depicted 
by crosses at those Gaussian points of integration (4 x 4) of an element for which the 
following condition holds: 

0;:” < h2; h = element dimension. (18) 

Figure 2 is a contour plot of the function 0::” for 30 equally spaced values between 
0. and 0.3 for the flow in a wall-driven cavity, Re = 1, g = 7.5 (Fig. 3~). The very 
sharp gradient in the region of D :/” = h2 is clearly evident and since the accuracy of the 
numerical technique is of O(h2), condition (18) is suitable for determining the rigid 
regions within the flow. 

c&l’ 
0.0 0.2 0.4 0.6 0.8 1 .o 

FIG. 2. Contour plot of SQRT (trace D ** 2). 
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FIG. 3A. (a) Re = 1, g = 2.5. (b) Re = 1, g= 5. (c) Re = 1, g = 7.5. (d) Re = 1,g = 10. 
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FIG. 3B. Wall-driven cavity-velocity vector plots. (a) Re = 1, g = 2.5. (b) Re = 1, g = 5. 
(c) Re = 1, g = 7.5. (d) Re = 1, g = 10. 
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c 

b 

d 

FIG. 3C. Wall-driven cavity-pressure contour plots. (a) Re = 1, g = 2.5. (b) Re = 1, g = 5. 
(c) Re = 1, g = 7.5. (d) Re = 1, g = 10. 

Effect of Penalization Parameter E 

In order to establish the influence of the value of the penalization parameter E,the 
cavity flow (g = 5., Re = 1) was used. The same calculation was performed for 
E = 1O-2, 10-3, 10-4, 10-5, lO-‘j, lo-‘, the results being presented in Table I. These 
results illustrated the theoretical result, Eq. (15), which predicted an O(E~/~) perturba- 
tion effect of the parameter E as compared to the O(E) effect for Newtonian fluids [3]. 
So that the effect will be less than the order of approximation, E must be chosen smaller 

TABLE I 

Effect of Penalization Parameter z 

E Convergence behavior 

1 o-2 
10-S 
10-4 
10-S 
10-e 
IO-’ 

Rapid divergence 
No convergence 
Oscillatory slow convergence 
Convergence 
Convergence no difference in number of iterations 
Convergence 
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FIG. 4A. Body force problem-rigid regions. (a) g = 5. (b) g = 7.5. (c) g = 10. (d) g = 15. 

b 

Body force problem-velocity vector plots. (a) g = 5. (b) g = 7.5. (c) g = 10. (4 FIG. 4B. 
g = 15. 
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d 

FIG. 4C. Body force problem-pressure contour plots. (a) g = 5. (b) g = 7.5. (c) g = 10. 
(d) g = 15. 

than O(h2). All calculations presented in this paper were performed with a value of 
E = 10-S. 

Wall-Driven Cavity Flows 

Computations were carried out for flows of Re = 1. with g = 2.5, 5., 7.5, 10. using 
a mesh of 10 x 10 square elements. The symmetry of these rigid region?, as compared 
to the results of Fortin [9] who used six-node triangles is clear, illustrating the ad- 
vantages of quadrilaterials over triangles. The average number of iterations required 
to achieve a residue less than lO-4 was 25. 

Figures 3A-C are the plots of the rigid regions, velocity vectors, and pressure 
contours for each of the four flows. In the pressure contour plots the different symbols 
represent the same pressure value in each plot. 

Body Force Problem 

Computations were performed for Re = 1. with g = 5., 7.5, lo., 15. rigid region, 
velocity vector, and pressure contour plots being presented in Figs. 4A-C, respectively. 
The heuristic prediction of the growth of the rigid region by Duvaut and Lions [5] is 
well illustrated by these results. It is interesting to note the appearance of rigid 
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regions in the four corners of the cavity for g = 15. Again the symmetry of the results 
is striking. In the pressure contour plots the + line is the contour line of zero pressure. 
The other values are distributed equally about the zero value; 0 is 12, d is 6, x is -6 
and 0 is - 12 pressure units. 

Rotating Flow 

As an illustration of the effectiveness of the isoparametric element the flow between 
two cylinders, the minor rotating and the outer stationary, was calculated. Fig. 5b 
shows the rigid region of the flow and Fig. 5a the FEM mesh used for the calculation. 

FIG. 5. Rotating flow between two cylinders. (a) FEM mesh. (b) Rigid region, g = 5, w = 1. 

Limit Load Analysis of Mechanical Systems 

Let the boundary r of Q be given by r = I’, u r, ; then we consider the problem 

rnjn [*a(“, v) + g S, D:/‘(V) dQ - sL(v)] (19) 

among all Y E (W&Q))” such that div v = 0 and v lr, = 0, where s is a scalar load multi- 
plier and 

L(V) = JQhui dQ + jr, FiUi dr. 

Duvaut and Lions [5] have shown that for a given L(.) there exists a value S, such that 
for all S < S, the solution of (19) is identically zero. By duality considerations Mercier 
[12] has proved that (19) can be used for the analysis of limit loads of systems made of 
“elasto-plastic” materials. In the plane strain analysis of a material of von Mises or 
Tresca type g/2112 is the yield criterion and the limit analysis consists of finding S, , 
where SC is the load factor for which the mechanical system collapses. Most limit load 
analyses to date have been based on first-order finite elements. Here we apply the 
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nine-node element to the classic problem of the vertical earth cut, of Fig. 1 b. Let 
y = (0, y) be the gravitational force; H, the height of the cut; and g/21j2 the Tresca 
yield criterion. The problem of finding the limit load S, can be restated as the dimen- 
sionless problem: find the smallest /3, /3 = Hy1j2/g, such that the solution of (19) is 
u = 0. The problem has been dealt with in depth in [12,4] and we refer the reader to 
these papers for full details. We have simulated the problem by setting H = y = 1 and 
varying g. 

Figures 6a-d are the regions of rigid flow for g = 0.1,0.2,0.3,0.385. It can be seen 
that for g = 0.385 the flow is completely blocked. Additional runs in order to deter- 
mine the exact value of g for completely blocked flow revealed that for g = 0.38 the 
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single Gaussian point of integration in the bottom right-hand corner was not rigid. 
Thus /? = 3.72; this is to be compared with p = 3.87 as calculated by Mercier [12] and 
the classical theory prediction of 3.0 < /3 < 3.83. 

CONCLUSIONS 

The penalty and reduced integration approach to the Navier-Stokes equations 
using a nine-node isoparametric element has been shown to be successful in the treat- 
ment of non-Newtonian fluid flows. The importance of the choice of the penalization 
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parameter E and the use of a higher order of integration for the non-Newtonian term 
have been illustrated. 

Although a rigorous proof of the convergence of the algorithm used and error 
estimates for the technique are still open questions at this stage, the quality of the 
results suggest that the method can have successful applications to practical problems. 
The program used for the numerical examples presented here, with the appropriate 
modifications to the constitutive relative, has been successfully used for the study of 
blood flows past artificial heart valves [S]. 
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